Toán 9 Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn Lý thuyết toán 9 chương 2 hình học
Toán 9 Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn thuộc phần Lý thuyết Toán 9 tập 1 được trình bày chi tiết, rõ ràng theo khung chương trình SGK giúp cho các bạn học sinh ôn tập và củng cố lý thuyết môn Toán lớp 9.
Lý thuyết Sự xác định đường tròn
1. Định nghĩa về đường tròn
Đường tròn tâm O bán kính R > 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O; R) hay (O).
Nếu A nằm trên đường tròn (O; R) thì OA = R.
Nếu A nằm trong đường tròn (O; R) thì OA < R.
Nếu A nằm ngoài đường tròn (O; R) thì OA > R.
Bổ sung kiến thức:
+ Đường tròn đi qua các điểm A1, A2, ..., An gọi là đường tròn ngoại tiếp đa giác A1A2...An
+ Đường tròn tiếp xúc với tất cả các cạnh của đa giác A1A2...An gọi là đường tròn nội tiếp đa giác đó.
2. Cách xác định đường tròn
+ Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp tam giác vuông đó
+ Trong tam giác đều , tâm đường tròn ngoại tiếp là trọng tâm tam giác đó.
+ Trong tam giác thường:
Tâm đường tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó
Tâm đường tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó
Chú ý: Không vẽ được đường tròn nào đi qua 3 điểm thẳng hàng
3. Tâm đối xứng
Đường tròn là hình có tâm đối xứng. Tâm của đường tròn là tâm đối xứng của đường tròn đó.
4. Trục đối xứng
Đường tròn là hình có trục đối xứng. Bất kỳ đường kính nào của đường tròn cũng là trục đối xứng của đường tròn.
5. Ví dụ cụ thể
Câu 1: Cho tam giác đều ABC có cạnh bằng a. AB, BN, CP là các đường trung tuyến. Chứng minh 4 điểm B, P, N, C cùng thuộc một đường tròn. Tính bán kính đường tròn đó.
Hướng dẫn:
Vì tam giác ABC đều nên các trung tuyến đồng thời cũng là đường cao .
Suy ra AM, BN, CP lần lượt vuông góc với BC, AC, AB.
Từ đó ta có các tam giác BPC, BNC là tam giác vuông với BC là cạnh huyền
Tam giác BPC vuông tại P có đường trung tuyến PM nên PM = BM = MC = 1/2 BC (1)
Tam giác BNC vuông tại N có đường trung tuyến NM nên NM = MB = MC = 1/2 BC (2)
Từ (1) và (2) suy ra: PM = NM = MB = MC = 1/2 BC
Hay: Các điểm B, P, N, C cùng thuộc đường tròn
Đường kính BC = a, tâm đường tròn là trung điểm M của BC
>>>> Bài tiếp theo: Lý thuyết Đường kính và dây của đường tròn
Trên đây là Lý thuyết Sự xác định đường tròn. Tính chất đối xứng của đường tròn dành cho các em học sinh tham khảo, nắm chắc được lí thuyết Toán lớp 9 Chương 2: Đường tròn. Qua đó giúp các em học sinh ôn tập nắm chắc kiến thức cơ bản môn Toán 9 và hỗ trợ các em học sinh trong các kì thi trong năm học lớp 9. Ngoài ra mời thầy cô và học sinh tham khảo thêm một số tài liệu tham khảo: Luyện tập Toán 9, Lí thuyết Toán 9, ...
Xem thêm bài viết khác
Toán 9 Bài 2: Tỉ số lượng giác của góc nhọn
Toán 9 Bài 1 Một số hệ thức về cạnh và đường cao trong tam giác vuông
Toán 9 Bài 3: Bảng lượng giác
Toán 9 Bài 4: Ứng dụng thực tế các tỉ số lượng giác của góc nhọn
Toán 9 Bài 2: Đường kính và dây của đường tròn
Toán 9 Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
Toán 9 Bài 4: Vị trí tương đối của đường thẳng và đường tròn
Giải Toán 9 Bài 1 Sự xác định đường tròn. Tính chất đối xứng của đường tròn