Cho đường tròn (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Giải Toán 9
Chứng minh tứ giác nội tiếp
Bài tập Toán 9: Tứ giác nội tiếp được GiaiToan.com biên soạn bao gồm đáp án chi tiết cho từng bài tập giúp các bạn học sinh ngoài bài tập trong sách giáo khoa (sgk) có thể luyện tập thêm các dạng bài tập cơ bản và nâng cao Toán hình lớp 9. Đây là tài liệu tham khảo hay dành cho quý thầy cô và các vị phụ huynh lên kế hoạch ôn tập học kì môn Toán 9 và ôn tập thi vào lớp 10. Mời các bạn học sinh và quý thầy cô cùng tham khảo tài liệu chi tiết!
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB.
1) Chứng minh rằng các điểm M, D, O, H cùng nằm trên một đường tròn.
2) Đoạn OM cắt đường tròn tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác MCD.
3) Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.
Hướng dẫn giải
a) Do H là trung điểm của AB => OH ⊥ AB
Theo tính chất của tiếp tuyến ta có OD ⊥ DM
=> Các điểm M, D, O, H cùng nằm trên đường tròn
b) Theo tính chất của tiếp tuyến ta có MC = MD
=> ∆MCD cân tại M
=> MI là một đường phân giác của góc CMD
Mặt khác I là điểm chính giữa cung nhỏ CD
=>
=> CI là phân giác của góc MCD
Vậy I là tâm đường tròn nội tiếp tam giác MCD
c) Ta có:
tam giác MPQ cân tại M có:
MO là đường cao
=>
=> Diện tích nhỏ nhất khi và chỉ khi MD + DQ nhỏ nhất
Mặt khác, theo hệ thức lượng trong tam giác vuông OMQ ta có DM.DQ = OD2 = R2 không thay đổi
=> MD + DQ nhỏ nhất
=> DM = DQ = R
Khi đó OM = R hay M là giao điểm của d với đường tròn tâm O bán kính R
Tứ giác nội tiếp là gì?
- Tứ giác nội tiếp đường tròn là tứ giác có bôn đỉnh nằm trên một đường tròn. Đường tròn đó được gọi là đường tròn ngoại tiếp tứ giác.
Cách chứng minh tứ giác nội tiếp
Phương pháp 1: Chứng minh bốn đỉnh của tứ giác cách đều 1 điểm
Phương pháp 2: Chứng minh tứ giác có hai góc đối diện bù nhau (tổng hai góc đối diện bằng 1800)
Phương pháp 3: Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau.
Tham khảo tài liệu tại đây: Hướng dẫn phương pháp chứng minh tứ giác nội tiếp
---------------------------------------------
Tài liệu liên quan:
- Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AB, AD, BN cắt CM tại P. Tính tỉ số giữa diện tích tam giác BMP và diện tích hình bình hành ABCD.
- Từ điểm M ở bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB của (O) (với A, B là các tiếp điểm) và cát tuyến MDE không qua tâm O (D, E thuộc (O), D nằm giữa M và E).
- Một xe máy đi từ A đến B với vận tốc và thời gian dự tính trước. Sau khi đi được nửa quãng đường, xe máy tăng thêm 10km/h vì vậy xe máy đến B sớm hơn 30 phút so với dự định. Tính vận tốc dự định của xe máy, biết quãng đường AB dài 120km.
- Tìm hai số tự nhiên biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124
- Một ôtô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của oto tại A.
- Giải bài toán cổ sau Quýt, cam mười bảy quả tươi Đem chia cho một trăm người cùng vui
- Giải bài toán bằng cách lập hệ phương trình dạng chuyển động
- Hai ô tô đi ngược chiều từ A đến B, xuất phát không cùng lúc
------------------------------------------------
Hy vọng tài liệu Chuyên đề Toán 9: Tứ giác nội tiếp giúp sẽ giúp ích cho các bạn học sinh học nắm chắc cách giải các bài tập hình học nâng cao đồng thời học tốt môn Toán lớp 9 ôn thi vào 10. Chúc các bạn học tốt, mời các bạn tham khảo! Mời thầy cô và bạn đọc tham khảo thêm một số tài liệu liên quan: Hỏi đáp Toán 9, Lý thuyết Toán 9, Giải Toán 9, Luyện tập Toán 9, ...
- Lượt xem: 18.852