Hỏi đáp Toán 10

Rút gọn biểu thức C = cos(5π – x) – sin(3π/2 – x) + tan(3π/2 – x) + cot(3π – x)

4
4 Câu trả lời
  • Đội Trưởng Mỹ
    Đội Trưởng Mỹ

    Rút gọn từng phần trong biểu thức có

    cos(5π – x) = cos(4π + π – x) = cos(π – x) = -cosx

    sin(3π/2 – x) = sin(2π + π/2 – x) = sin(π/2 – x) = cosx

    tan(3π/2 – x) = tan(2π + π/2 – x) = tan(π/2 – x) = cotx

    cot(3π – x) = cot(2π + π – x) = cot(π – x) = -cotx

    Thay vào biểu thức có:

    C = cos(5π – x) – sin(3π/2 – x) + tan(3π/2 – x) + cot(3π – x)

    C = -cosx + cosx + cotx – cotx

    C = 0

    Trả lời hay
    7 Trả lời 19/05/22
    • Hưng Vũ
      Hưng Vũ

      Tại sao trong biểu thức sin(5π-x) khi tách thành sin(4π+π-x) lại có thể làm biến mất 4π đi và ct j để làm biến mất 4π vậy bạn

      0 Trả lời 21:54 11/07
    • Captain
      Captain

      Công thức sin(x + k2π) = sinx

      sin(5π-x)=sin(π-x+2.2π) = sin (π- x)

      2 Trả lời 08:14 12/07
  • Biết Tuốt
    Biết Tuốt

    C = 0 nhé

    Trả lời hay
    1 Trả lời 19/05/22
    • nguyen thi
      nguyen thi

      ko bt

      0 Trả lời 09:07 01/10
      • Thùy Chi
        Thùy Chi

        Sử dụng giá trị lượng giác của cung có liên quan đặc biệt để rút gọn biểu thức

        sin(x + k2π) = sinx; cos(x + k2π) = cosx; tan(x + k2π) = tanx; cot(x + k2π) = cotx (với k ∈ Z)

        cos(π – x) = -cosx; sin(π/2 – x) = cosx; tan(π/2 – x) = cotx; cot(π – x) = -cotx

        Thay vào có:

        C = cos(5π – x) – sin(3π/2 – x) + tan(3π/2 – x) + cot(3π – x)

        C = cos(4π + π – x) + sin(2π + π/2 – x) + tan(2π + π/2 – x) + cot(2π + π – x)

        C = cos(π – x) + sin(π/2 – x) + tan(π/2 – x) + cot(π – x)

        C = -cosx + cosx + cotx – cotx

        C = 0

        0 Trả lời 19/05/22