Thị Lan Vũ Toán 9 Chuyên đề Toán 9

Rút gọn biểu thức căn x - 2/ x - 1

Rút gọn biểu thức:

(\frac{\sqrt{x}-2 }{x-1} -\frac{\sqrt{x}+2 }{x+2\sqrt{x}+1}).(\dfrac{1-x}{\sqrt{2} } )

1
1 Câu trả lời
  • Đường tăng
    Đường tăng

    \begin{matrix}
  \left( {\frac{{\sqrt x  - 2}}{{x - 1}} - \frac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).{\left( {\frac{{1 - x}}{{\sqrt 2 }}} \right)^2} \hfill \\
   = \left[ {\frac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \frac{{\sqrt x  + 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right].{\left( {\frac{{1 - x}}{{\sqrt 2 }}} \right)^2} \hfill \\
   = \left[ {\frac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \frac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right].{\left( {\frac{{1 - x}}{{\sqrt 2 }}} \right)^2} \hfill \\

\end{matrix}

    \begin{matrix}  = \left[ {\frac{{x - \sqrt x  - 2 - x - \sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right].{\left( {\frac{{x - 1}}{{\sqrt 2 }}} \right)^2} \hfill \\
   = \left[ {\frac{{ - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right].{\left( {\frac{{x - 1}}{{\sqrt 2 }}} \right)^2} \hfill \\
   = \left[ {\frac{{ - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right].{\left( {\frac{{x - 1}}{{\sqrt 2 }}} \right)^2} \hfill \\
   = \frac{{ - \sqrt x }}{{\sqrt x  - 1}} \hfill \\ 
 \end{matrix}

    0 Trả lời 12/08/22