Bài 2 trang 36 Toán 12 tập 1 Chân trời sáng tạo Giải Toán 12 Chân trời sáng tạo Bài 4

Nội dung
  • 1 Đánh giá

Bài 2 trang 36 SGK Toán 12

Toán 12 Bài 2 trang 36 tập 1 trong bài Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản SGK Toán 12 Chân trời sáng tạo được giải chi tiết giúp cho các em học sinh tham khảo, ôn tập, củng cố kỹ năng giải toán. Mời các em học sinh tham khảo.

Giải Bài 2 Toán 12 trang 36

Bài 2 trang 36 toán 12 tập 1: Cho hàm số y = x3 – 3x2 + 2.

a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y" = 0.

b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Lời giải chi tiết:

a) Tập xác định của hàm số: \mathbb{R}.

Ta có: y' = 3x2 - 6x

y'' = 6x - 6; y'' = 0 ⇔ x = 1.

=> Tọa độ điểm I(1; 0).

b) Ta có: y' = 0 ⇔ 3x2 - 6x = 0

⇔ x = 0 hoặc x = 2.

Lập bảng biến thiên:

Hàm số đạt cực đại tại x = 0 và y = 2

Hàm số đạt cực đại tại x = 2 và yCT = - 2

Tọa độ trung điểm của đoạn thẳng nối hai cực trị là (1; 0).

Vậy I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số

---> Câu hỏi cùng bài:

-------> Bài tiếp theo: Giải Toán 12 Chân trời sáng tạo Bài tập cuối chương 1

Chia sẻ bởi: Cự Giải
Mời bạn đánh giá!
  • Lượt xem: 24
Sắp xếp theo