Bài 1 trang 36 Toán 12 tập 1 Chân trời sáng tạo Giải Toán 12 Chân trời sáng tạo Bài 4

Nội dung
  • 1 Đánh giá

Bài 1 trang 36 SGK Toán 12

Toán 12 Bài 1 trang 36 tập 1 trong bài Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản SGK Toán 12 Chân trời sáng tạo được giải chi tiết giúp cho các em học sinh tham khảo, ôn tập, củng cố kỹ năng giải toán. Mời các em học sinh tham khảo.

Giải Bài 1 Toán 12 trang 36

Bài 1 trang 36 toán 12 tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:

a) y = x3 + x – 2

b) y = 2x^3 + x^2 -  \frac{ 1}{ 2} x  - 3

Lời giải chi tiết:

a) Xét hàm số: y = x3 + x – 2

1. Tập xác định: \mathbb{R}.

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y' = 3x2 + 1. Do y' > 0 trên \mathbb{R} nên hàm số đồng biến trên khoảng (– ∞; +\infty ).

Hàm số đã cho không có cực trị.

  • Các giới hạn tại vô cực:

\lim_{x \rightarrow -\infty} y=\lim_{x \rightarrow -\infty}x^3 \left ( 1+\frac{1}{x^2 }-\frac{ 2}{x^3}  \right ) =-∞

\lim_{x \rightarrow +\infty} y=\lim_{x \rightarrow +\infty}x^3 \left ( 1+\frac{1}{x^2 }-\frac{ 2}{x^3}  \right ) =+∞

  • Bảng biến thiên:

3. Đồ thị

Khi x = 0 thì y = - 2 nên (0; - 2) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ x3 + x – 2 = 0

⇔ x = 1.

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0).

Đồ thị của hàm số có tâm đối xứng là điểm I(0; - 2).

b) Xét hàm số: y = 2x^3 + x^2 -  \frac{ 1}{ 2} x  - 3

Đang cập nhật...

---> Câu hỏi cùng bài:

-------> Bài tiếp theo: Giải Toán 12 Chân trời sáng tạo Bài tập cuối chương 1

Chia sẻ bởi: Cự Giải
Mời bạn đánh giá!
  • Lượt xem: 35
Sắp xếp theo