Cho pt (m+2)x² - (2m-1)x - 3+m =0. Tìm m để pt có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia Chuyên đề Toán 9 thi vào 10

Nội dung
  • 1 Đánh giá

Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán. Tài liệu được GiaiToan.com biên soạn giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn cùng quý thầy cô tham khảo.

Đề bài: Cho phương trình (m + 2)x2 - (2m - 1)x - 3 + m = 0

a) Chứng tỏ phương trình có nghiệm với mọi m.

b) Tìm m để phương trình có hai nghiệm phân biệt x1; x2. Khi đó, tìm m để nghiệm này gấp đôi nghiệm kia.

Lời giải chi tiết:

Xét phương trình (m + 2)x2 - (2m - 1)x - 3 + m = 0 (1)

a) Với m = - 2, phương trình (1) ⇔ 5x - 5 = 0 ⇔ x = 1.

Với m ≠ - 2, ta có:

∆ = (2m - 1)2 - 4(m + 2)(m - 3)

= 4m2 - 4m + 1 - 4m2 - 4m + 24

= 25 > 0

Do đó phương trình (1) luôn có nghiệm với mọi m.

b) Điều kiện để phương trình có hai nghiệm phân biệt: m ≠ - 2.

Áp dụng hệ thức Vi-ét, ta có:

\begin{cases} x_1 + x_2 = - \frac{b}{a}  =  \frac{2m-1}{m+2}   \\x_1 . x_2= \frac{c}{a} = \frac{m-3}{m+2}  \end{cases}

Để phương trình có hai nghiệm phân biệt mà nghiệm này gấp đôi nghiệm kia:

⇔ (x1 - 2x2)(x2 - 2x1) = 0

⇔ 9x1x2 - 2(x1 + x2)2 = 0

\frac{9\left(m-3\right)}{m+2}-\frac{2\left(2m-1\right)^2}{\left(m+2\right)^2}=0

⇔ 9(m2 - m - 6) - 2(4m2 - 4m + 1) = 0

⇔ m2 - m - 56 = 0

\left [ \begin{array} {1} m=8 \\ m = -7 \end{array} \right. (tmđk)

Vậy m = 8 hoặc m = - 7 thì phương trình có hai nghiệm phân biệt mà nghiệm này gấp đôi nghiệm kia.

Cách chứng minh phương trình luôn có nghiệm với mọi m

Bước 1: Tính Delta

Bước 2: Biến đổi biểu thức Delta, chứng minh Delta luôn dương thì phương trình luôn có nghiệm với mọi giá trị của m.

Bước 3: Kết luận.

Cách tìm m để phương trình có hai nghiệm thỏa mãn điều kiện cho trước

+ Tìm điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là a ≠ 0 và \Delta  \geqslant 0)

+ Áp dụng hệ thức Vi-ét để biến đổi biểu thức nghiệm đã cho

+ Đối chiếu với điều kiện xác định của tham số để xác định giá trị cần tìm.

Chia sẻ bởi: Cự Giải
Mời bạn đánh giá!
  • Lượt xem: 54
Sắp xếp theo