Vận dụng 1 Trang 12 Toán 9 Tập 1 Kết nối tri thức Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn

Nội dung
  • 1 Đánh giá

Vận dụng 1 Trang 12 Toán 9 KNTT Tập 1

Vận dụng 1 Trang 12 Toán 9 KNTT là lời giải bài Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn SGK Toán 9 Kết nối tri thức hướng dẫn chi tiết lời giải giúp cho các em học sinh tham khảo, ôn tập, củng cố kỹ năng giải Toán 9. Mời các em học sinh cùng tham khảo chi tiết.

Giải Vận dụng 1 Trang 12 Toán 9 KNTT

Vận dụng 1 (sgk trang 12): Xét bài toán trong tình huống mở đầu. Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống (x, y ∈ N*).

a) Lập hệ phương trình đối với hai ẩn x, y.

b) Giải hệ phương trình nhận được ở câu a để tìm câu trả lời cho bài toán.

Bài toán: Một mảnh vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây cải bắp. Hãy tính số cây cải bắp được trồng trên mảnh vườn đó, biết rằng:

- Nếu tăng thêm 8 luống, nhưng mỗi luống trồng ít đi 3 cây cải bắp thì số cải bắp của cả vườn sẽ ít đi 108 cây;

- Nếu giảm đi 4 luống, nhưng mỗi luống trồng thêm 2 cây thì số cải bắp cả vườn sẽ tăng thêm 64 cây.

Hướng dẫn:

Từ những giả thiết đã cho ta lập được hệ hai phương trình hai ẩn x, y.

Giải hệ phương trình để tìm ra số luống và số cây trồng ở mỗi luống.

Lời giải chi tiết:

Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống (x, y ∈ N*).

Số cây cải bắp được trồng trong vườn là: xy (cây).

  • Số luống trong vườn sau khi tăng thêm 8 luống là: x + 8 (luống).

Mỗi luống trồng ít đi 3 cây thì số cây cải bắp ở mỗi luống là: y – 3 (cây).

Do số cải bắp của cả vườn sẽ ít đi 108 cây nên ta có phương trình:

(x + 8)(y – 3) = xy – 108

xy – 3x + 8y – 24 = xy – 108

3x – 8y = 84 (1)

  • Số luống trong vườn sau khi giảm đi 4 luống là: x – 4 (luống).

Mỗi luống trồng thêm 2 cây thì số cây cải bắp ở mỗi luống là: y + 2 (cây).

Do số cải bắp cả vườn sẽ tăng thêm 64 cây nên ta có phương trình:

(x – 4)( y + 2) = xy + 64

xy + 2x – 4y – 8 = xy + 64

2x – 4y = 72

x – 2y = 36 (2)

Từ (1) và (2) ta có hệ phương trình \left\{ \begin{array}{l}3x - 8y = 84 \\x - 2y = 36\end{array} \right.

Từ phương trình thứ hai của hệ, ta có x = 2y + 36. Thế vào phương trình thứ nhất của hệ, ta được 3(2y + 36) - 8y = 84 hay - 2y + 108 = 84. Suy ra y = 12.

Từ đó x = 2 . 12 + 36 = 60

Vậy số cây cải bắp được trồng trên mảnh vườn là 60 . 12 = 720 cây.

---> Câu hỏi cùng bài:

---> Bài tiếp theo: Toán 9 Kết nối tri thức Luyện tập chung Trang 19

--------------------------------------------

Chia sẻ bởi: Cự Giải
Mời bạn đánh giá!
  • Lượt xem: 360
Sắp xếp theo