Hoạt động 1 trang 26 Toán 12 tập 1 Kết nối tri thức Giải Toán 12 Kết nối tri thức Bài 4

Nội dung
  • 1 Đánh giá

Hoạt động 1 trang 26 Toán 12 KNTT

Toán 12 Hoạt động 1 trang 26 Tập 1 là câu hỏi trong bài Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số với lời giải chi tiết giúp cho các em học sinh tham khảo, củng cố kỹ năng giải Toán 12 Kết nối tri thức.

Giải Hoạt động 1 Toán 12 trang 26

Hoạt động 1 trang 26 toán 12 tập 1: Cho hàm số y = x2 - 4x + 3. Thực hiện lần lượt các yêu cầu sau:

a) Tính y' và tìm các điểm tại đó y' = 0.

b) Xét dấu y' để tìm các khoảng đồng biến, khoảng nghịch biến và cực trị của hàm số.

c) Tính \lim_{x\rightarrow -\infty } y, \lim_{x\rightarrow +\infty } y và lập bảng biến thiên của hàm số.

d) Vẽ đồ thị của hàm số và nhận xét về tính đối xứng của đồ thị.

Lời giải chi tiết:

Tập xác định của hàm số: \mathbb{R}

a) Ta có: y' = 2x - 4;

y' = 0 ⇔ x = 2

b) Ta có: y ' > 0 với x ∈ (- ∞; 2); y' < 0 với x ∈ (2; + ∞).

=> Hàm số đồng biến trên khoảng (- ∞; 2) và nghịch biến trên khoảng (2; + ∞).

Do đó, hàm số đạt cực tiểu tại x = 2 và yCT = y(2) = - 1. Hàm số không có cực đại.

c) Ta có: \lim_{x\rightarrow - \infty}  y =\lim_{x\rightarrow - \infty} \left (  x^2-4x+3   \right ) = + \infty

\lim_{x\rightarrow + \infty}  y =\lim_{x\rightarrow + \infty} \left (  x^2-4x+3   \right ) = + \infty

Lập bảng biến thiên của hàm số:

d) Giao điểm của đồ thị hàm số với trục tung là điểm (0; 3).

  • Ta có: y = 0 ⇔ x2 - 4x + 3 = 0

⇔ (x - 1)(x - 3) = 0

⇔ x = 1 hoặc x = 3.

Do đó, giao điểm của đồ thị hàm số với trục hoành là các điểm (1; 0) và (3; 0).

  • Đồ thị hàm số có trục đối xứng là đường thẳng x = 2.

Ta có đồ thị như hình dưới đây:

---> Câu hỏi cùng bài:

-------> Bài tiếp theo: Giải Toán 12 Kết nối tri thức Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn

Chia sẻ bởi: Cự Giải
Mời bạn đánh giá!
  • Lượt xem: 07
Sắp xếp theo