Đề thi giữa kì 1 môn Toán lớp 8 năm học 2022 - 2023 - Đề số 4 Đề kiểm tra giữa kì 1 Toán 8

Nội dung
  • 1 Đánh giá

Đề thi giữa kì 1 Toán 8- Đề số 4 được Giaitoan.com biên soạn bao gồm các dạng bài tập và đáp án chi tiết được xây dựng theo trọng tâm chương trình học THCS giúp học sinh ôn tập, củng cố kiến thức, giúp định vị khả năng tư duy logic, khả năng nhận biết. Đây là nền tảng vững chắc giúp các bạn tự tin làm bài trong các kì thi và kiểm tra định kì môn Toán 8. Mời các bạn cùng tham khảo chi tiết!

A. Đề thi Toán giữa kì 1 lớp 8

Bản quyền thuộc về GiaiToan
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

I. TRẮC NGHIỆM

Câu 1  Tích của đơn thức: {x^2}và đa thức5{x^3} - x - 1

A.5{x^5} - {x^3} - 1

B.- 5{x^5} + {x^3} + {x^2}

C.5{x^5} + {x^3} + {x^2}

D.5{x^5} - x - 1

Câu 2: Phân tích đa thức thành nhân tử: {x^2} - 8x là:

A. 8-x

B.x\left( {x - 8} \right)

C.x\left( {8 - x} \right)

D.- x\left( {x - 8} \right)

Câu 3: Cho tứ giác ABCD biết \widehat A = {60^ \circ },\widehat A = {50^ \circ } ,\widehat D = {120^ \circ } , khi đó số đo

A. 130

B. 65

C. 170

D. 50

Câu 4: Tìm giá trị nhỏ nhất của biểu thức A = {x^2} + 4x + 6

A. 6

B. 2

C. 1

D. -2

Câu 5: Cho tam giác ABC có DE là đường trung bình của tam giác ABC. Khẳng định nào sau đây là đúng?

A. DE = BC

B. DE = \frac{1}{3}BC

C. DE = \frac{1}{2}BC

D. DE = 2BC

II. TỰ LUẬN

Câu 1:

a) Tìm x biết:x\left( {x - 2} \right) + \left( {2 - x} \right) = 0

b) Tính giá trị của biểu thức tại\left( {x - 4} \right)\left( {x + 4} \right) tại x = 1

Câu 2:  Thực hiện phép tính:

a)\,2x\left( {3{x^2} - 4x + 1} \right)

b)\,\left( {2x + 1} \right)\left( {3{x^3} - {x^2} + 1} \right)

c)\,\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)

Câu 3: Cho tam giác ABC cân tại A . Gọi P, Q lần lượt là trung điểm của AB, AC

a) Tính PQ biết BC = 8cm

b) Chứng minh tứ giác PQCB là hình thang cân

c) Kẻ PI vuông góc với BQ tại I \left( {I \in BQ} \right)và CJ vuông góc với BQ tại J \left( {J \in BQ} \right) . Chứng minh rằng:CJ = 2PI

Câu 4: Tìm GTLN của biểu thức: A = 6 - {x^2} - 3x

B. Đáp án Đề thi Toán giữa kì 1 lớp 8

1. Đáp án trắc nghiệm

1. A

2. B

3. A

4. B

5. C

2. Đáp án tự luận

Câu 1:

\begin{array}{l}
1)\,\,\,\,\,x\left( {x - 2} \right) + \left( {2 - x} \right) = 0\\
\,\,\,\,\,\,\,\, \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\
\,\,\,\,\,\,\, \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0\\
\,\,\,\,\,\,\, \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x - 1 = 0}\\
{x - 2 = 0}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x = 1}\\
{x = 2}
\end{array}} \right.
\end{array}

Vậy x = 1 hoặc x = 2

2)\,\,\,\left( {x - 4} \right)\left( {x + 4} \right) = {x^2} - 16.Với x = 1 thì  {x^2} - 16 = {1^2} - 16 =  - 15

Câu 2:

\begin{array}{l}
a)\,2x\left( {3{x^2} - 4x + 1} \right) = 2x.3{x^2} - 2x.4x + 2x.1\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6{x^3} - 8{x^2} + 2x
\end{array}

\begin{array}{l}
b)\,\left( {2x + 1} \right)\left( {3{x^3} - {x^2} + 1} \right) = 2x.3{x^3} - 2x.{x^2} + 2x.1 + 1.3{x^3} + 1.\left( { - {x^2}} \right) + 1.1\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6{x^4} - 2{x^3} + 2x + 3{x^3} - {x^2} + 1\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6{x^4} + {x^3} + 2x - {x^2} + 1
\end{array}

c)\,\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) = {x^3} - {y^3}

Câu 3:

Đề thi giữa kì 1 môn Toán lớp 8 năm học 2022-2023 - Đề 4

a)  Tính PQ

Xét tam giác ABC có: \left\{ {\begin{array}{*{20}{c}}
{AM = MB}\\
{AN = NC}
\end{array}} \right.\,\,\,\,\,\,\left( {gt} \right)

PQ là đường trung bình của tam giác ABC

\Rightarrow MN = \frac{1}{2}BC = \frac{1}{2}.8 = 4\,\,\,\left( {cm} \right)

b) Chứng minh PQBC là hình thang cân:

Vì PQ là đường trung bình của tam giác \Rightarrow PQ//BC\RightarrowPQBC là hình thang

\widehat {PBC} = \widehat {QCB} ( \Delta ABC cân tại A) PQBC là hình thang cân

c) Kẻ AH vuông góc với BQ:

Xét \Delta ABH có  \left\{ \begin{array}{l}
BP = AP\\
PI//AH\left( { \bot BQ} \right)
\end{array} \right. \RightarrowPI là đường trung bình của tam giác

\Rightarrow PI = \frac{1}{2}AH

Xét\Delta AQH\Delta CQJ có: \left\{ \begin{array}{l}
AQ = QC\\
\widehat {AQH} = \widehat {JQC}\left( {d\,d} \right)\\
\widehat {AHQ} = \widehat {QJC} = {90^ \circ }
\end{array} \right.\Rightarrow \Delta AQH = \Delta CQJ \Rightarrow AH = CJ \Rightarrow PI = \frac{1}{2}CJ

Câu 4:

A = 6 - {x^2} - 3x =  - {x^2} - 3x + 6 =  - \left( {{x^2} + 3x - 6} \right)

=  - \left[ {\left( {{x^2} + 2.x.\frac{3}{2} + {{\left( {\frac{3}{2}} \right)}^2} - \frac{{33}}{6}} \right)} \right] =  - \left[ {{{\left( {x - \frac{3}{2}} \right)}^2} - \frac{{33}}{6}} \right]

Nhận thấy:

\begin{array}{l}
{\left( {x - \frac{3}{2}} \right)^2} \ge 0\\
 \Rightarrow {\left( {x - \frac{3}{2}} \right)^2} - \frac{{33}}{6} \ge  - \frac{{33}}{6}\\
 \Rightarrow  - \left[ {{{\left( {x - \frac{3}{2}} \right)}^2} - \frac{{33}}{6}} \right] \le \frac{{33}}{6}
\end{array}

Dấu bằng xảy ra khi:

\begin{array}{l}{\left( {x - \dfrac{3}{2}} \right)^2} = 0\\ \Leftrightarrow x - \dfrac{3}{2} = 0\\ \Leftrightarrow x = \dfrac{3}{2}\end{array}

Vậy GTLN củaA = \frac{{33}}{6} khi x = \frac{3}{2}

Mời các bạn tải tài liệu miễn phí tham khảo hướng dẫn giải chi tiết!

Tài liệu liên quan:

-------------------------------------------------

Trên đây Giaitoan.com giới thiệu tới quý thầy cô và bạn đọc tài liệu Đề kiểm tra giữa học kì 1 môn Toán 8 năm học 2022 - 2023 Đề 4. Ngoài ra học sinh có thể tham khảo thêm một số tài liệu liên quan: Lý thuyết Toán 8, Luyện tập Toán 8, Giải Toán 8 Tập 1, ....

  • 538 lượt xem
Chia sẻ bởi: Lê Thị Thùy
Sắp xếp theo