Luyện tập 2 Trang 106 Toán 11 Tập 1 sách Kết nối tri thức Bài 15: Giới hạn của dãy số

Nội dung
  • 1 Đánh giá

Luyện tập 2 Trang 106 Toán 11 Tập 1 KNTT

Luyện tập 2 Trang 106 Toán 11 Tập 1 KNTT là lời giải chi tiết trong bài Bài 15: Giới hạn của dãy số SGK Toán 11 Kết nối tri thức tạo giúp cho các em học sinh tham khảo, ôn tập, củng cố kỹ năng giải Toán 11. Mời các em học sinh cùng tham khảo chi tiết.

Giải Luyện tập 2 Trang 106 Toán 11 Tập 1

Luyện tập 2 (sgk trang 106): Cho dãy số (un) với u_n=\frac{3.2^n-1}{2^n}. Chứng minh rằng \lim_{x\rightarrow \infty  } u_n=3.

Hướng dẫn:

Ta nói dãy số (un) có giới hạn là số thực a khi n dần tới dương vô cực nếu \lim_{n\rightarrow + \infty  } (u_n -a)=0, kí hiệu \lim_{n\rightarrow + \infty  } u_n =a hay u_n\rightarrow a khi n \rightarrow  + \infty.

Lời giải chi tiết:

Ta có u_n-3=\frac{3.2^n-1}{2^n}-3=\frac{1}{2^n}  \rightarrow 0 khi n \rightarrow  + \infty.

Do vậy \lim_{x\rightarrow \infty  } u_n=3

---> Câu hỏi cùng bài:

---> Bài tiếp theo: Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

------------------------------------------------------

Trên đây là lời giải chi tiết Luyện tập 2 Trang 106 Toán 11 Tập 1 KNTT nằm trong bài Bài 15: Giới hạn của dãy số cho các em học sinh tham khảo, nắm được cách giải các dạng bài tập của Chương 5. Qua đó giúp các em học sinh ôn tập chuẩn bị cho các bài thi giữa và cuối học kì lớp 11. Ngoài ra Giaitoan mời thầy cô và học sinh tham khảo thêm một số tài liệu: Trắc nghiệm Toán 11 Kết nối tri thức,.... Chúc các em học tốt.

Chia sẻ bởi: Phước Thịnh
Mời bạn đánh giá!
  • Lượt xem: 28
Sắp xếp theo